The NASA/ESA/CSA James Webb Space Telescope has set its sights on the starburst galaxy Messier 82 (M82), a small but mighty environment that features rapid star formation. By looking closer with Webb’s sensitive infrared capabilities, a team of scientists is getting to the very core of the galaxy, gaining a better understanding of how it is forming stars and how this extreme activity is affecting the galaxy as a whole.
Read more
An international team of astronomers using the NASA/ESA/CSA James Webb Space Telescope have discovered a variety of molecules, ranging from relatively simple ones like methane to complex compounds like acetic acid and ethanol, in early-stage protostars where planets have not yet formed. These are key ingredients for making potentially habitable worlds.
The rate at which the Universe is expanding, known as the Hubble constant, is one of the fundamental parameters for understanding the evolution and ultimate fate of the cosmos. However, a persistent difference, called the Hubble Tension, is seen between the value of the constant measured with a wide range of independent distance indicators and its value predicted from the afterglow of the Big Bang. The NASA/ESA/CSA James Webb Space Telescope has confirmed that the Hubble Space Telescope’s keen eye was right all along, erasing any lingering doubt about Hubble’s measurements.
Two new images from the NASA/ESA/CSA James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) showcase the star-forming region NGC 604, located in the Triangulum Galaxy (M33), 2.73 million light-years away from Earth. In these images, cavernous bubbles and stretched-out filaments of gas etch a more detailed and complete tapestry of star birth than seen in the past.
Looking deep into space and time, two teams using the NASA/ESA/CSA James Webb Space Telescope have studied the exceptionally luminous galaxy GN-z11, which existed when our 13.8 billion-year-old Universe was only about 430 million years old.
Using the unprecedented capabilities of the NASA/ESA/CSA James Webb Space Telescope, an international team of scientists have obtained the first spectroscopic observations of the faintest galaxies during the first billion years of the Universe. These findings help answer a longstanding question for astronomers: what sources caused the reionisation of the Universe? These news results have effectively demonstrated that small dwarf galaxies are the likely producers of prodigious amounts of energetic radiation.
The NASA/ESA/CSA James Webb Space Telescope has found the best evidence yet for emission from a neutron star at the site of a recently observed supernova. The supernova, known as SN 1987A, occurred 160 000 light-years from Earth in the Large Magellanic Cloud. SN 1987A was a type II supernova [1] that was observed on Earth in 1987, the first supernova that was visible to the naked eye since 1604 — before the advent of telescopes. It has thus offered the astronomical community a rare opportunity to study the evolution of a supernova and what was left behind, from the very beginning. SN 1987A was a core-collapse supernova, meaning the compacted remains at its core are expected to have formed either a neutron star or a black hole. Evidence for such a compact object has long been sought, and whilst indirect evidence for the presence of a neutron star has previously been found, this is the first time that the effects of high energy emission from the young neutron star has been detected.
A new treasure trove of images from the NASA/ESA/CSA James Webb Space Telescope showcases near- and mid-infrared portraits of 19 face-on spiral galaxies. This new set of exquisite images show stars, gas, and dust on the smallest scales ever observed beyond our own galaxy. Teams of researchers are studying these images to uncover the origins of these intricate structures. The research community’s collective analysis will ultimately inform theorists’ simulations, and advance our understanding of star formation and the evolution of spiral galaxies.
One of the key missions of the NASA/ESA/CSA James Webb Space Telescope is to probe the early Universe. Now, the unmatched resolution and sensitivity of Webb’s NIRCam instrument have revealed, for the first time, what lies in the local environment of galaxies in the very early Universe. This has solved one of the most puzzling mysteries in astronomy — why astronomers detect light from hydrogen atoms which should have been entirely blocked by the pristine gas that formed after the Big-Bang. These new Webb observations have found small, faint objects surrounding the very galaxies that show the ‘inexplicable’ hydrogen emission. In conjunction with state-of-the-art simulations of galaxies in the early Universe, the observations have shown that the chaotic merging of these neighbouring galaxies is the source of this hydrogen emission.
Beta Pictoris, a young planetary system located just 63 light-years away, continues to intrigue scientists even after decades of in-depth study. It possesses the first dust disc imaged around another star — a disc of debris produced by collisions between asteroids, comets, and planetesimals. Observations from the NASA/ESA Hubble Space Telescope revealed a second debris disc in this system [1], inclined with respect to the first. Now, a team of astronomers using the NASA/ESA/CSA James Webb Space Telescope to image the Beta Pictoris (Beta Pic) system has discovered a new, previously unseen structure.